当前位置:

HyperLPR 高性能开源中文车牌识别框架

HyperLPR 高性能开源中文车牌识别框架是一个开源的、基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP、C/C++、Python语言,Windows/Mac/Linux/Android/IOS 平台。车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用。在机器
  • 大小:
    102.01MB
  • 演示网站:
    暂无
  • 当前版本:
    暂无
  • 日期:
    2024-11-15 04:54:00
  • 相关链接:
    Home Page
  • 所属分类:
    开发框架 C++
  • 软件评级:

  • 下载人气:
    37
免费下载
源码属性
授权 开源
大小 102.01MB
语言 C++
HyperLPR 高性能开源中文车牌识别框架是一个开源的、基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP、C/C++、Python语言,Windows/Mac/Linux/Android/IOS 平台。车牌识别是计算机视频图像识别技术在车辆牌照识别中的一种应用。在机器学习算法的驱动下,可以做到对车辆车牌信息进行检测和识别,应用范围包括卡口摄像机,停车场等。
HyperLPR特性:速度快 720p,单核 Intel 2.2G CPU (MaBook Pro 2015)平均识别时间低于100ms基于端到端的车牌识别无需进行字符分割识别率高,卡口场景准确率在95%-97%左右轻量,总代码量不超1k行
TODO:支持多种车牌以及双层支持大角度车牌轻量级识别模型
模型资源说明:cascade.xml 检测模型 - 目前效果最好的cascade检测模型cascade_lbp.xml 召回率效果较好,但其错检太多char_chi_sim.h5 Keras模型-可识别34类数字和大写英文字 使用14W样本训练char_rec.h5 Keras模型-可识别34类数字和大写英文字 使用7W样本训练ocr_plate_all_w_rnn_2.h5 基于CNN的序列模型ocr_plate_all_gru.h5 基于GRU的序列模型从OCR模型修改,效果目前最好但速度较慢,需要20ms。plate_type.h5 用于车牌颜色判断的模型model12.h5 左右边界回归模型
注意事项:Win工程中若需要使用静态库,需单独编译本项目的C++实现和Python实现无任何关联,都为单独实现在编译C++工程的时候必须要使用OpenCV 3.3以上版本 (DNN 库),否则无法编译安卓工程编译ndk尽量采用14b版本
Python 依赖:Keras (>2.0.0)Theano(>0.9) or Tensorflow(>1.1.x)Numpy (>1.10)Scipy (0.19.1)OpenCV(>3.0)Scikit-image (0.13.0)PIL
CPP 依赖:Opencv 3.4 以上版本
Linux/Mac 编译:仅需要的依赖OpenCV 3.4 (需要DNN框架)
HyperLPR 高性能开源中文车牌识别框架下载地址 已被下载37次
本资源由用户投稿上传,内容来自互联网,本站只做免费推荐用于学习分享,如有版权及其他问题,请联系 本站编辑 处理
重要:如软件存在付费、会员、充值等,均属软件开发者或所属公司行为,与本站无关,网友需自行判断
下载排行